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EMITTANCE THEORY FOR CYLINDRICAL
FIBER SELECTIVE EMITTER

Donald L. Chubb
National Aeronautics and Space Administration

Lewis Research Center
Cleveland, Ohio 44135

ABSTRACT

A fibrous rare earth selective emitter is approximated as an infinitely long cylinder. The spectral emittance, ελ, is
obtained by solving the radiative transfer equations with appropriate boundary conditions and uniform temperature.
For optical depths, KR = αλR, where αλ is the extinction coefficient and R is the cylinder radius, greater than 1 the
spectral emittance is nearly at its maximum value. There is an optimum cylinder radius, Ropt, for maximum emitter
efficiency, ηE. Values for Ropt are strongly dependent on the number of emission bands of the material. The
optimum radius decreases slowly with increasing emitter temperature, while the maximum efficiency and useful
radiated power increase rapidly with increasing temperature.

INTRODUCTION

Fibrous rare earth oxide selective emitters for thermophotovoltaic (TPV) applications have been of research interest
for several years. Nelson (1) began working with fibrous emitters in the 1980’s. In addition fibrous emitters are
being developed at Quantum Group (2) and the Auburn Space Power Institute (3). This paper develops the emittance
theory for a fibrous emitter by approximating the emitter as an infinitely long cylinder. Since the fibrous emitters
consist of bundles of 1 to 10 µm diameter fibers this theory does not include the effects of the reflectance that
occurs when radiation leaves a fiber and enters an adjoining fiber. The whole bundle of fibers is being approximated
as a continuous cylinder. If the fibers are closely packed and the reflectance at the interface between a fiber and the
medium in the voids between fibers is small, then the error resulting from the approximation should be small.

The spectral emittance of the cylinder is obtained by solving the radiative transfer equation with appropriate bound-
ary conditions. Knowing the spectral emittance allows the emitter efficiency to be calculated. As an example,
emitter efficiency is calculated for an erbium-holmium aluminum garnet and thulium aluminum garnet (Tm3Al5O12)
which are being studied at NASA Lewis.

TEMPERATURE OF EMITTING CYLINDER

As pointed out earlier (4), temperature drop across a planar or film type emitter causes a major reduction in the
spectral emittance in the emission band of a selective emitter. However, in most cases for a cylindrical emitter there
will be a negligible temperature drop. This can be seen by considering the steady state energy equation for an
infinite cylinder with no internal heat generation and thermal conductivity, kth, and where we assume the tempera-
ture, T, and radiation flux, Q, depend only on the radial coordinate, r.

r k
dT

dr
Qth −





= constant ( )1

In order to avoid the term in brackets being singular at r = 0 it must vanish for all r. Thus at all r the conduction and
radiation fluxes balance.

k
dT

dr
Qth = ( )2
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In other words, for all steady state conditions all the thermal energy being conducted into the cylinder at the outer
radius, r = R, leaves the cylinder as radiation.

The radiation flux, Q, will always be less than the blackbody flux σsbT
4, where σsb = 5.67×10-12 w/cm2K4 is the

Stefan Boltzmann constant. Therefore, define the following dimensionless variables.

Q
Q

T
T

T

T
r

r

Rsb s s
= = =

σ 4 3( )

Where Ts is the temperature at r = R. In this case equation (2) becomes the following.

dT

dr
Q= γ ( )4

Where γ is the ratio of the radiation flux to the thermal conduction flux.

γ σ σ≡ =sbTs

kth
s

R

sbTs R

kth

4 3
5Τ ( )

For the ceramic materials used in most selective emitters, kth ≥ 0.01 w/cmK. Also, for TPV applications Ts ≤ 2000K.
Therefore, γ ≤ 4.5R(cm). So that if R < 0.1 cm it is a reasonable approximation to neglect the right hand side of
equation (4) and obtain the result T = constant (T = Ts). If γ << 1 for a film or planar emitter then a linear tempera-
ture variation results (4) rather than a uniform temperature. For the cylinder emittance calculation that follows, a
uniform temperature is assumed.

i–(0)

FIGURE 1. Schematic of emitting cylinder.
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SPECTRAL EMITTANCE OF CYLINDER

The spectral emittance is defined as follows.

ελ
λ

λ
≡ ( )

q R

ebs Ts

( )

,
( )6

Where qλ(R) is the radiation flux leaving the cylinder at r = R and ebs(λ,Ts) is the blackbody emissive power where
λ is wavelength and Ts is the cylinder temperature.

ebs Ts ibs Ts
hco

hco kTs
λ π λ π

λ λ
, ,

exp
( )( ) = ( ) =

( ) −[ ]
2 2

5 1
7

Appearing in equation (7) is the blackbody intensity ibs(λ,Ts), w/cm2 nm steradian, Planck’s constant, h,
Boltzmann’s constant, k, and the vacuum speed of light, co. The radiation flux, qλ(R), is obtained by solving the
radiation transfer equations for the intensities, iλ

+(R), and iλ
–(R). Where iλ

+(R) is the intensity moving in the +R
direction and iλ

–(R) is the intensity moving in the –R direction as shown in figure 1. Assuming the intensities de-
pend only on the radial coordinate leads to transport equations for iλ

+(R) and  iλ
–(R) identical to the planar case (5).

These equations are written in terms of the optical depth, K, rather than the coordinate, r.

K r a= αλ ( )8

KR R b= αλ ( )8

Where aλ is the extinction coefficient, assumed independent of r, and is the sum of the absorption coefficient, aλ,
and the scattering coefficient σλ.

αλ λ σλ= +a ( )9

The boundary conditions that must be applied are the following. At r = K = 0, from symmetry conditions.

i i at K aλ λ
+ = − =( ) ( )        ( )0 0 0 10

At r = R or K = KR
 the intensity moving in the –R direction is equal to the reflected intensity.

i KR foi KR at K KR bλ ρ λ
− = + =( ) ( )        ( )10

Where ρfo is the reflectance at the cylinder outer radius, R. At r = R total reflectance occurs for certain angles of
incidence, θ. At an interface between a material with a index of refraction, ni, and a material with index of refrac-
tion, nj, where ni > nj, radiation moving from i into j with angles of incidence θ > θM, where θM is given by Snell’s
Law will be totally reflected. Since nf > no, for the cylinder-air interface we have the following result for the
reflectance, ρfo.

ρ θ θ µ θfo for M where M M
no
nf

a= ≥ ≡ = −






1 2 2 1
2

11     cos ( )

For the case where θ < θM (µ > µM) we approximate ρfo by the reflectance for normal incidence (6).
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ρ θ θ µ µfo
nf no
nf no

M M b= −
+







< >( )
2

11 ( )

Once the intensities i+
λ  (KR,θ) and i–λ  (KR,θ) are obtained the radiation flux, qλ(KR), can be calculated.

q KR q KR q KRλ λ λ( ) = +( ) − −( ) ( )12

q KR i KR d i KR dλ π λ θ
θ

π
θ θ θ π λ µ µ µ+( ) = +( )

=
= +( )∫ ∫2

0

2
2

0

1
13,

/
cos sin , ( )

q KR i KR d i dλ π λ θ
θ π

π
θ θ θ π λ µ µ µ−( ) = − −( )

=
= −( )∫ ∫2

2
2 0

0

1
14,

/
cos sin , ( )

Solution of the radiative transfer equations for qλ(KR) is presented in (5) for the film or planar case with a linear
temperature variation through the film and for no scattering (σs = 0 in eq. (9)). Results for the uniform temperature
cylinder can be obtained from these results by setting εfs = 0 (ρfs = 1) and ∆T = 0 in equations (33) to (36) of
reference (5). When this is done the following result is obtained for the spectral emittance.

ελ
ρ

ρ µ ρ
µ

=
−( ) − ( )[ ]

− ( ) ( ) + −( ) 

















no fo E KR

E KR foE KR M fo E
KR

M

2 1 1 4 3
2

1 4 3 3
2 1 3

15( )

uniform temperature and no scattering

Appearing in equation (15) is the exponential integral E3(x) defined as follows.

E x z
x

z
dzn

n

o
( ) exp ( )= −





−∫ 21
16

The reflectance, ρfo, is given by equation (11b) and µM is given by equation (11a).

As equations (15) and (11) indicate, for no scattering the spectral emittance of a uniform temperature cylinder
depends on the optical depth, KR, and indices of refraction, nf and no. For single crystal materials, such as rare earth
doped yttrium aluminum garnet (YAG), scattering should be negligible. However, for polycrystalline rare earth
oxides such as those being considered in references (1) to (3) scattering should be significant. In those cases
equation (15) will overestimate the spectral emittance.

Consider ελ for the two limiting conditions KR = 0 and KR → ∞. The KR = 0 case corresponds to a wavelength
where the material is transparent. While the KR → ∞ case applies to an emission band of a selective emitter. Since

E3(0) = 1/2 and  limx→∞  E(x) = 0, equation (15) yields the following:

ελ = =0 0 17        ( )for KR

lim ( )
K

no fo
R →∞

= −( )ελ ρ2 1 18

Equation (18) is the usual result for an opaque body emitting (or absorbing) in vacuum (no = 1).
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In figure 2 the spectral emittance, ελ, using equation (15) is shown as a function of optical depth, KR, for no = 1 and
nf = 1, 1.5 and 2.0. As figure 2 shows ελ increases rapidly with KR and reaches nearly its limiting value
(eq. (18)) for KR = 1. Notice also that for small KR as nf increases the spectral emittance rate of increase also
increases. For most of the selective emitter materials, 1.5 ≤ nf ≤ 2.0.

FIGURE 2. Spectral emittance for cylinder of radius, R, at a constant temperature, Ts, as
  a function of optical depth, Kl = alR, where al is the extinction coefficient and nf is 
  the cylinder index of refraction and no is the surrounding index of refraction.
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FIGURE 3. Theoretical spectral emittance of Er0.3 Ho2.7 Al5 O12 cylinder of radius, 
   R = 0.4 cm, calculated using measured extinction coefficient and index of refraction.
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Once the extinction coefficient, αλ, and index of refraction, nf, are known equation (15) can be used to calculate ελ.
Figure 3 shows the calculated spectral emittance for an erbium-holmium aluminum garnet cylinder (R = 0.4 cm)
with 10% erbium and 90% holmium, Er0.3Ho2.7Al5O12. This single crystal material is being considered for a film
type selective emitter (5). The extinction coefficient and index of refraction were obtained from reference (5).
Holmium has its main emission band centered at λ ≈ 2000 nm with smaller bands centered at λ ≈ 1100, 890 and
750 nm. Erbium has its main emission band centered at λ ≈ 1500 nm with secondary bands centered at λ ≈ 1000,
800 and 640 nm. All of these bands show up as regions of large emittance in figure 3. In the region 2000 < λ
< 4500 nm, Er0.3Ho2.7Al5O12 is nearly transparent (αλ → 0) and thus eλ is small. The highly oscillatory result in
this region results from numerical error in αλ  (5). For the region λ > λc = 5000 nm ελ becomes large again. This
large ελ results from vibrational modes of the crystal lattice and is a characteristic of most rare earth selective
emitter materials (1). We call the wavelength, λc, the long wavelength cutoff.

EMITTER EFFICIENCY

As a measure of the effectiveness of a selective emitter define the emitter efficiency as follows.

η
λ λ

λ

λ λ

ελ λ λ
λ

ελ λ λ
E

useful radiated power

total radiated power

Qb
QT

q R d
o

q R d
o

ebs Ts d
o

ebs Ts d
o

g g

≡ = = ∞ = ∞
∫
∫

∫
∫

  

  

( )

( )

( , )

( , )
( )19

The numerator, Qb, is the power radiated in the wavelength region 0 ≤ λ ≤ λg. In a TPV system λg corresponds to
the bandgap energy, Eg = hco/λg, of the PV cell. The denominator is the total radiated power, QT.

FIGURE 4. Emitter efficiency, hE, and useful power, Qb, as a function of cylinder radius, 
   R, at emitter temperature, Ts = 1700 K for Er0.3 Ho2.7 Al5 O12.
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Consider how ηE will be behave as a function of the cylinder radius, R. As figure 2 shows, ελ increases rapidly with
optical depth, KR = αλR. Therefore, for the emission bands and the long wavelength region (large αλ and
λ < λg or λ > λc) ελ will quickly approach its limiting value as R increases from zero. However, for the regions be-
tween the emission bands and the long wavelength cutoff (small αλ and λl < λ < λc) the spectral emittance will in-
crease more slowly to its limiting value as R increases from zero. Thus, the numerator of equation (19), Qb, will
rapidly rise from zero to its limiting value as R increases from zero. At the same time, the denominator, QT, will



7NASA/TM—1998-208656

increase more slowly and will continue increasing with R while the numerator is increasing at a much lower rate. As
a result, there will be an optimum radius, Ropt, that will yield maximum ηEMAX. This is illustrated in figure 4 for
Er0.3Ho2.7Al5O12 where λg = 2200 nm (Eg = 0.56eV) was chosen for use in equation (19) and Ts = 1700 K. As can
be seen, ηE rises rapidly to ηEMAX and then decreases slowly for R > Ropt. Also shown in figure 4 is the useful
power radiated, Qb. As can be seen, Qb rises rapidly and then begins to level off. For Ts = 1700K the optimum ra-
dius is Ropt = 0.34 cm. It should be mentioned that for radii of this magnitude the uniform temperature assumption
becomes questionable. In figures 5(a) and (b) Ropt, ηE(Ropt) and Qb(Ropt) are shown as functions of Ts. Both
ηE(Ropt) and Qb(Ropt) increase significantly with temperature while Ropt decreases only 25 percent in going from
Ts = 1200 to 2000K. The large increase in ηE results because the maximum value of the blackbody emissive power,
ebs(λ,Ts), shifts to shorter wavelengths as Ts increases. Therefore, Qb increases faster than QT as Ts increases. The
useful power, Qb, increases at least as T4

s.

FIGURE 5. Optimum radius, Ropt, maximum efficiency, hEMax, and useful power, Qb, at
   R = Ropt as functions of emitter temperature, Ts, for Er0.3 Ho2.7 Al5 O12. (a) Optimum
   radius, Ropt. (b) Maximum efficiency and useful power.
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Now consider thulium aluminum garnet, Tm3Al5O12, as a cylindrical selective emitter. Thulium has its main emis-
sion band centered at λ ≈ 1700 nm with smaller bands centered at λ ≈ 1200, 800 and 700 nm. Thus compared to
Er0.3Ho2.7Al5O12, which has 8 emission bands and thus a large region of high ελ for λ < λg, Tm3Al5O12 has a much
smaller high emittance region for λ < λg. For Tm3Al5O12, λg = 1900 nm was chosen. Just as for Er0.3Ho2.7Al5O12,
thulium aluminum garnet has large emittance for λ > λc = 5000 nm.

FIGURE 6. Optimum radius, Ropt, maximum efficiency, hEMax, and useful power, Qb, at
   R = Ropt as functions of emitter temperature, Ts, for Tm3 Al5 O12. (a) Optimum
   radius, Ropt. (b) Maximum efficiency and useful power.
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In figure 6(a) and (b), Ropt, ηE(Ropt) and Qb(Ropt) are shown as functions of Ts for Tm3Al5O12. These results were
calculated using measured values for αλ and nf (5). The first thing to notice is that Ropt for Tm3Al5O12 is much
smaller than Ropt for Er0.3Ho2.7Al5O12. This occurs because thulium aluminum garnet has a smaller region of large
emittance than erbium-holmium aluminum-garnet, as mentioned above. Therefore, the majority of Qb results from
emission in the main emission band centered at λ ≈ 1900 nm where αλ ≈ 30 cm–1. Thus when R ≈ 0.3 mm, KR ≈ 1
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and ελ will be near its maximum value (fig. 2). As a result, Qb will also be near its maximum and thus ηE will be a
maximum. Therefore, we expect that Ropt will occur near 0.3 mm for thulium aluminium garnet. Figure 6(a)
substantiates this result.

Comparing figures 5(b) and 6(b) we see that the emitter efficiencies are nearly the same for Er0.3Ho2.7Al5O12 and
Tm3Al5O12. However, the useful power, Qb, is much larger for Er0.3Ho2.7Al5O12. This occurs for two reasons. First
of all, erbium-holmium aluminum garnet has a much larger region of large emittance for λ < λg than thulium
aluminum garnet. Secondly, λg = 1900 nm for thulium aluminum  garnet whereas λg = 2200 nm for
erbium-holmium aluminum garnet. Thus more of the spectrum is included in Qb for Er0.3Ho2.7Al5O12.

An important point about selective emitters is brought out by comparing figures 5(b) and 6(b). That is, ηE and useful
power, Qb, do not behave in the same manner. Increasing Qb by adding more emission bands, as in the case of
Er0.3Ho2.7Al5O12, does not mean that ηE will increase.

CONCLUSION

Most fibrous rare earth selective emitters consist of bundles of 1 to 10 µm diameter bundles. In this study that bundle
has been approximated as an infinite cylinder. From the solution to the radiative transfer equations the
spectral emittance of the cylindrical emitter was calculated. Several conclusions can be made about the cylindrical
rare earth selective emitters.

1.  For most rare earth selective emitters the temperature is uniform through the cylinder.
2. When the optical depth KR = αλR ≥ 1 the spectral emittance is nearly a maximum.
3. There is an optimum value for the radius, Ropt, which yields maximum emitter efficiency.
4. Ropt strongly depends on the emitter material. For an emitter with only a single strong emission band Ropt is the

order of 0.1 mm, whereas for an emitter with many emission bands Ropt is the order of 1 mm.
5. Ropt decreases slowly with increasing emitter temperature.
6. The maximum efficiency, ηEMAX, and useful power, Qb, increase significantly with temperature.
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A fibrous rare earth selective emitter is approximated as an infinitely long cylinder. The spectral emittance, ελ, is obtained
by solving the radiative transfer equations with appropriate boundary conditions and uniform temperature. For optical
depths, KR = αλR, where αλ is the extinction coefficient and R is the cylinder radius, greater than 1 the spectral emittance
is nearly at its maximum value. There is an optimum cylinder radius, Ropt, for maximum emitter efficiency, ηE. Values for
Ropt are strongly dependent on the number of emission bands of the material. The optimum radius decreases slowly with
increasing emitter temperature, while the maximum efficiency and useful radiated power increase rapidly with increasing
temperature.
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